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Problem Set 3:  due Thursday, February 15, 2018 
 
N.B.:  These problems include pieces which are open-ended.  Feel free to ask for advice, 
clarification!  Some recommended references have been mentioned in class, in posted 
notes, and given in posted articles. 
 
1) Consider a shear layer in a stably stratified fluid, as shown.  Take the coefficient 

of surface tension between the fluids of mass densities ,   to be . 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Calculate the general dispersion relation for waves/instabilities at the interface.  

Take the fluids as ideal.  What controls high and low k behavior? 
 
 
b) Ignoring surface tension, can you identify a dimensionless number which 

characterizes the competition between shear and buoyancy?  Compare your 
number to the Richardson number. 

 
 
c) What is the critical velocity for the onset of shear instability?  Hoe does it scale 

with , , k, etc.? 
 
 
d) Taking , , this problem becomes a crude model of the air-sea 

interface  Using it, propose a mechanism for wave generation by wind.  What is 
the critical wind velocity for excitation of short wavelength ( ) gravity-
capillary waves? 

 
 
e) The actual mechanism for wave excitation – to the extent it is understood – is 

nonlinear.  In general terms, how might you critique your own proposal in (d.)? 
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2a) Determine the general dispersion relation for surface waves in a fluid of finite 
depth d.  Treat the fluid as ideal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Discuss the limits , . 
 
 
c) For , deduce by analogy with sound waves the equations describing surface 

waves in shallow water.  Hint:  the dynamical fields are water height and 
horizontal velocity.  Try to deduce/guess the nonlinear equations, called shallow 
water equations. 

 
 
d) Comment on the relevance of shallow water dynamics to the objective of ripple 

tank demonstrations, frequently used to stimulate optical wave phenomena in high 
school physics classes. 
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3) In MHD, the Ohm’s Law is  
 
   

 
 and displacement current is neglected (low frequency!), so – with Faraday’s Law 

– one obtains the magnetic induction equation, which closely resembles the 
vorticity equation. 

 
 
a) Derive the magnetic field induction equation.  Show  is frozen-in for 

compressible ideal MHD. 
 
 
b) For ideal MHD, prove Alfven’s Theorem: 
 
 
   
 
 Be sure to treat motion of the loop.  What is this the counterpart of? 
 
 
c) What does Alfven’s theorem mean? 
 
 
 
 
4a) Derive the dispersion relation for buoyancy waves in a stably stratified fluid with 

 and . These are called internal waves. Take the equilibrium 
hydrostatic. Show that internal waves are ‘backward’, i.e. the phase and group 
velocity can be in opposite directions. 

 
b) Generalize your analysis of internal waves to include rotation effects, where 

. When are corrections to the dispersion relation due to rotation of 
significance? 

 
 
 
5) Falkovich observes that the interfacial version of the ideal flow shear driven 

instability (i.e. the Kelvin-Helmholtz instability) necessarily has a maximum (or 
minimum) in the profile of vorticity located at the interface.  This problem 
addresses the presence of inflection points in smooth profiles leading to ideal 
shear flow instabilities. 
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 Consider an inviscid incompressible shear flow  in a domain , 
.  Show that for instability to occur, there must be at least one value of 

x in  for which , i.e. there must be an inflection point in the flow.  
It is useful to approach this using the 2D vorticity advection equation and to write 

.  Also, write the frequency  as . 
 
 N.B.:  The theorem you just derived was first proved by Rayleigh (who else?) and 

establishes only that an inflection point is necessary for instability.  A second 
theorem, due to Fjortoft, demonstrates that a vorticity maximum is necessary. 

 V = Vy x( ) ŷ 0 ≤ × ≤ a
− ∞ < y < +∞

0,a[ ]  
2∂ Vy ∂ 2x = 0

 v = ∇φ × ẑ ω  realω + iγ


